Data from: https://coronabeds.jantasamvad.org/index.html
Date accessed: 2021-04-29 06:37:54 IST | 2021-04-28 18:07:54 PDT

Number of available ICU beds for COVID-19 patients

Number of available beds: 18/4809 beds

Blue: hospitals with available COVID ICU beds
Red: hospitals whose COVID ICU beds are completely occupied

Radius of circles correspond to number of ICU beds for COVID patients at each hospital.



Number of available beds for COVID-19 patients

Number of available beds: 1635/21014 beds

Blue: hospitals with available COVID beds
Red: hospitals whose COVID beds are completely occupied

Radius of circles correspond to number of beds for COVID patients at each hospital.



Code for above

Scrape data from https://coronabeds.jantasamvad.org/index.html

# ==============================================================================
# * Date last run
# ==============================================================================

# 2021-04-28 18:07:13 PDT


# ==============================================================================
# * Workspace
# ==============================================================================
library(xml2)
library(dplyr)
library(rvest)
library(data.table)
library(leaflet)


# * Docker specifics
# ==============================================================================
system("open -a docker")

launch_dkr = "docker run -d -p 4445:4444 selenium/standalone-firefox"
shut_dkr = "docker stop $(docker ps -q)"


system(shut_dkr)
system(launch_dkr)
Sys.sleep(3)


# * Start Selenium
# ==============================================================================
remDr = RSelenium::remoteDriver(remoteServerAddr = "localhost",
                                port = 4445L,
                                browserName = "firefox")

remDr$open()


# * Navigate to website 
# ==============================================================================
urls = c("https://coronabeds.jantasamvad.org/all-covid-icu-beds.html", "https://coronabeds.jantasamvad.org/beds.html")


covid_info_l = lapply(urls, function(url) {
    remDr$navigate(url)
    Sys.sleep(3)
    # remDr$screenshot(display = TRUE)
    covid_info = xml2::read_html(remDr$getPageSource()[[1]])
})

system(shut_dkr)



# Get hospital info
# ==============================================================================

hosp_info_l = lapply(covid_info_l, function(covid_info) {
    
    hosp_loc = covid_info %>%
        html_nodes(xpath = '//*[@id="hospitals_list"]/tr/th/a[1]') %>%
        html_attr("href")

    hosp_name = covid_info %>%
        html_nodes(xpath = '//*[@id="hospitals_list"]/tr/th/a[2]/text()') %>%
        html_text()

    hosp_last_update = covid_info %>%
        html_nodes(xpath = '//*[@id="hospitals_list"]/tr/td[1]/small/a') %>%
        html_text()

    hosp_total_bed = covid_info %>%
        html_nodes(xpath = '//*[@id="hospitals_list"]/tr/td[2]/a') %>%
        html_text() %>%
        as.numeric()

    hosp_vacant_bed = covid_info %>%
        html_nodes(xpath = '//*[@id="hospitals_list"]/tr/td[3]/a[1]') %>%
        html_text() %>%
        as.numeric()

    hosp_address = sapply(seq_along(hosp_name), function(n, covid_info) {
        xpath_n = sprintf('//*[@id="collapse%s"]/td/div/div/p/text()', n)
        
        covid_info %>%
            html_nodes(xpath = xpath_n) %>%
            html_text()
    }, covid_info)

    hosp_tel = sapply(seq_along(hosp_name), function(n, covid_info) {
        xpath_n = sprintf('//*[@id="collapse%s"]/td/div/ul/li[2]/a', n)
        
        tel = covid_info %>%
            html_nodes(xpath = xpath_n) %>%
            html_text()

        tel = gsub(" ", "", tel)
        tel = paste0(tel, collapse = "; ")
    }, covid_info)

    if(FALSE) {
        tb = covid_info %>%
            html_nodes(xpath = '/html/body/div/div[3]/table') %>%
            html_table()
    }

    coords = lapply(hosp_loc, function(loc_url) {
        print(loc_url)
        if(loc_url != "" & grepl("@", loc_url) ) {
            url_split = strsplit(loc_url, "/")[[1]]
            which_coord = grepl("@", url_split)
            coords = strsplit(
                         gsub("@", "", url_split[ which_coord ]),
                         ",")[[1]][1:2] %>%
                as.numeric()

            
            data.frame(lat = coords[1],
                       lon = coords[2])
        } else {
            data.frame(lat = NA,
                       lon = NA)
        }
        
    }) %>%
    rbindlist()

    hosp_df = data.frame(name = hosp_name,
                         vacant = hosp_vacant_bed,
                         total = hosp_total_bed,
                         last_update = hosp_last_update,
                         address = hosp_address,
                         tel = hosp_tel)
    hosp_df = cbind(hosp_df, coords)

})


timestamp = Sys.time() %>%
    gsub(" ", "_", .) %>%
    gsub(":", "-", .)

out_dir = file.path("content/post/data/delhi-covid")
if( !dir.exists(out_dir) ) dir.create(out_dir)

out_name = paste0("delhi-covid_", timestamp, "_PDT.RDS")
out_file = file.path(out_dir, out_name)

saveRDS(hosp_info_l, out_file)


Make searchable table and map

# ==============================================================================
# * Workspace
# ==============================================================================
library(xml2)
library(dplyr)
library(rvest)
library(data.table)
library(leaflet)
library(DT)
library(widgetframe)
library(kableExtra)

in_dir = "data/delhi-covid"
in_file = sort(list.files(in_dir, full.names = TRUE), decreasing = TRUE)[1]

hosp_info_l = readRDS(in_file)


# ==============================================================================
# Table
# ==============================================================================

tbls = lapply(hosp_info_l, function(hosp_df) {
    hosp_df$percent_vac = round(hosp_df$vacant/hosp_df$total * 100, 2)
    hosp_df$beds = ifelse(hosp_df$percent_vac > 0, "yes", "no")
    pal =  colorFactor(c("red", "#004EFF"), domain = c("yes", "no"))

    tbl_cols = c("name", "beds", "vacant", "total", "last_update",
                 "address", "tel")
    hosp_tbl = hosp_df[ tbl_cols ]

    hosp_tbl$beds = factor(hosp_tbl$beds)
    

    hosp_tbl = datatable(hosp_tbl,
                         filter = 'top',
                         extensions = list('Scroller', 'Buttons'),
                         rownames = FALSE,
                         colnames = c("Hospital", "Beds Available",
                                      "Vacant beds", "Total beds",
                                      "Last Updated", "Address", "Telephone"),
                         options = list(
                                       pageLength = 15,
                                       dom = 'Bfrtip',
                                       scrollX = TRUE,
                                       scroller = TRUE,
                                       scrollY = TRUE,
                                       autoWidth = TRUE,
                                       order = list(list(2, 'desc')),
                                       buttons = c('copy', 'csv', 'pdf')
                                   )) %>%
        formatStyle(names(hosp_tbl) ,"white-space"="nowrap") %>%
        formatStyle(
            'beds',
            backgroundColor = styleEqual(
                                  c("yes", "no"), c('#B6CCFF', '#FFBEBE')
                              )) %>%
        formatStyle('beds', `text-align` = 'center')

})



# ==============================================================================
# Map
# ==============================================================================

maps = lapply(hosp_info_l, function(hosp_df) {

    which_nocoords = is.na(hosp_df$lat)
    hosp_df = hosp_df[ !which_nocoords, ]
    
    hosp_df$percent_vac = round(hosp_df$vacant/hosp_df$total * 100, 2)
    hosp_df$beds = ifelse(hosp_df$percent_vac > 0, "yes", "no")
    hosp_df$size = round(sqrt(hosp_df$total))
    hosp_df$size = ifelse(hosp_df$size > 15, 15, hosp_df$size)

    hosp_df$labels = sprintf("<strong>%s</strong><p>Vacant beds: %s <br> Total beds: %s <br>
Percent vacant: %s%% <br> Address: %s <br> Tel: %s</p>",
hosp_df$name,
hosp_df$vacant,
hosp_df$total,
hosp_df$percent_vac,
hosp_df$address,
hosp_df$tel
) %>% lapply(htmltools::HTML)

    map = leaflet() %>%
        addTiles(group = "Light Map") %>%
        addProviderTiles(providers$CartoDB.DarkMatter,
                         group = "Dark Map") %>%
        addCircleMarkers(data = hosp_df[ hosp_df$beds %in% "no", ],
                         radius = ~size,
                         color = "red",
                         fillColor = "red",
                         label = ~labels,
                         popup = ~labels,
                         group = "No beds available") %>%
        addCircleMarkers(data = hosp_df[ hosp_df$beds %in% "yes", ],
                         radius = ~size,
                         color = "#004EFF",
                         fillColor = "#004EFF",
                         fillOpacity = 0.75,
                         label = ~labels,
                         popup = ~labels,
                         group = "Beds available") %>%
        addLayersControl(
            baseGroups = c("Light Map", "Dark Map"),
            overlayGroups = c("No beds available", "Beds available"),
            options = layersControlOptions(collapsed = FALSE)
        )

})